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Abstract 

The B(H) curve of yoke laminations may be an uncertain 
parameter in numerical field models of accelerators due 
to manufacturing variances or because sample 
magnetometer measurements may not be available. In 
this work, a method is derived to compute the B(H) curve 
of iron yokes, for a given set of material measurements 
on ring specimens and field measurements of the built 
magnet. Instead of using a closed-form expression for 
the B(H) curve, material measurements are used to 
derive a data-driven model that reflects the observed 
variances due to chemical compositions, heat treatment 
and cold working. To this end we make use of a truncated 
Karhunen-Loeve expansion. The parameters of the data-
driven model are subsequently updated by fitting the 
simulated to the measured magnetic flux density in the 
magnet. It is shown that the proposed method can 
retrieve a previously selected ground truth B(H) curve 
that was used to generate the field data for the fitting. 

1 Introduction 

Numerical field computation is an established tool for the 
design of accelerator magnets and for the tracing of 
manufacturing errors in the built magnets. The numerical 
models depend on input parameters, such as the B(H) 
curve of the yoke material. Although the B(H) curve of 
toroidal material specimen can be measured [1], the 
exact magnetization curve of the magnet yoke might 
differ due to variations in the manufacturing process, 
stress levels or ageing processes. The determination of 
the B(H) dependence of a particular piece of magnetic 
material inside electric devices has been treated in [2] 
and of the yoke of normal conducting accelerator 
magnets in [3]. These approaches describe the B(H) 
curve by parametrized closed-form expressions and 
determine the parameters by solving an optimization 
problem that fits a simulated to a measured quantity. 

Experience has shown that fitting these closed form 
expressions to the measured B(H) curves results in large 
residuals.  

In this paper the closed form expression is substituted by 
the random field-based H(B) curve description derived in 
[4] from measured data using the truncated Karhunen-

Loeve expansion. The resulting H(B) curve 
parametrization provides the (provable) best description 
according to the underlying manufacturing-related 
variations and their probability. Subsequently it is shown, 
for a test case, that the parameters can be determined by 
solving an optimization problem that fits the (measured) 
flux density of the corresponding magnet. In this way, the 
numerical model is tailored to a specific magnet as built 
and allows interpolative field prediction for excitation 
currents that have not been measured. 

2 Magnetostatic Problem 

The numerical model of the normal-conducting, iron 
dominated magnet on a domain 𝐷 is based on the 
magnetostatic problem given by 

 curl 𝐇 = 𝐉   in 𝐷  

  div 𝐁 = 0  in 𝐷 (1) 

       𝐁 ∙ 𝐧 = 0  on 𝜕𝐷.  

Thereby, 𝐁 is the magnetic flux density, 𝐇 denotes the 

magnetic field strength, 𝐉 is the electric current density 

with div 𝐉 = 0 and 𝐧 is the outward pointing unit normal. 

If the domain 𝐷 is contractible, the magnetic vector 
potential 𝐀 can be introduced such that curl 𝐀 =  𝐁. By 
incorporating the vector potential and the constitutive 
equation 𝜈(‖𝐁‖) ∙ 𝐁 = 𝐇, the curl-curl formulation of the 
magnetostatic problem 

  curl 𝜈(‖curl 𝐀‖)curl 𝐀 = 𝐉  in 𝐷 (2) 

                               𝐀 × 𝐧 = 0  on 𝜕𝐷  

is obtained. The corresponding weak formulation is: Find 
𝐀 ∈ 𝒱, such that  

  ∫ curl 𝜈(‖curl 𝐀‖)curl 𝐀 ∙ curl 𝐯
 

𝐷
 d𝑉 = ∫ 𝐉 ∙ 𝐯 d𝑉

 

𝐷
  (3) 

for all 𝐯 ∈ 𝒱, with  

   𝒱: =  {𝑣 ∈ ℋ0(curl; 𝐷)|〈𝐯, grad𝑤〉𝑫 = 0 ∀𝑤 ∈ 𝐻0
1(𝐷)}. (4) 

3 Material model 

For non-linear, isotropic and anhysteretic material the 
reluctivity function 𝜈: ℝ0

+ → ℝ0
+ is defined for 𝐁 ≠ 𝟎 by  

  𝜈(‖𝐁‖) =
𝑓HB(‖𝐁‖)

‖𝐁‖
 .  (5) 

Thereby, the material curve 𝑓HB: ℝ0
+ → ℝ0

+, 𝐵 ↦ 𝐻 maps 

the intensity 𝐵 ≔ ‖𝐁‖ of the magnetic flux density to the 

intensity 𝐻 ≔  ‖𝐇‖ of the corresponding magnetic field 



strength. The requirements of 𝑓HB and 𝜈, to yield a unique 
solution of the weak curl-curl problem are found in [4]. 
Among others, the monotonicity of 𝑓HB and the existence 

of a constant 𝛼 > 0 that serves as a lower bound of the 

derivative of 𝑓HB is crucial.  

Given a set of B-H data measurements  

 {(𝐵1
1, 𝐻1

1), … , (𝐵𝐿
1, 𝐻𝐿

1), … , (𝐵1
𝐾 , 𝐻1

𝐾), … , (𝐵𝐿
𝐾 , 𝐻𝐿

𝐾)}  (6) 

of 𝐾 specimens in 𝐿 discrete points in the interval of 𝐵. 
For each specimen the discrete measurements are 
interpolated by a monotone cubic spline curve  

 𝑓𝑘: 𝐼 → ℝ0
+,     𝐼 ≔ [0, min𝑘≤𝐾 𝐵𝐿

𝑘]. (7) 

According to [4], these curves can be seen as realisations 
of the random field  

 𝑓HB: Ω × 𝐼 → ℝ0
+    (8) 

also called 𝑓HB by abuse of notation. Following [4], the 
random field is discretized by the truncated Karhunen-
Loeve expansion  

 𝑓HB
𝑀 (𝜔, 𝑠) = 𝔼[𝑓HB(𝑠)] + ∑ √𝜆𝑚𝑌𝑚(𝜔)𝑏𝑚(𝑠)𝑀

𝑚=1     (9) 

where (𝜆𝑚, 𝑏𝑚) are eigenpairs of the operator  

 𝑇𝑓HB
(𝑢)(𝑠) ≔ ∫ Cov(𝑓HB(𝑠), 𝑓HB(𝑡))

 

𝐼
𝑢(𝑡) d𝑡   (10) 

and the random variables 𝑌𝑚 are for 𝜆𝑚 > 0 given by  

 𝑌𝑚(𝜔) =
1

√𝜆𝑚
∫ (𝑓HB(𝜔, 𝑠) − 𝔼[𝑓HB(𝑠)])

 

𝐼
𝑏𝑚(𝑠)d𝑡.  (11) 

The eigenvalue problem is numerically solved by the 
Galerkin method and an approximation with radial basis 
functions. Furthermore, the expected value 𝔼[𝑓HB(𝑠)] is 

approximated by the sample mean 𝑓HB(𝑠) of 𝑓𝑘. Thus, a 

parametrized H(B) curve  𝑓HB: ℝ𝑀  × 𝐼 → ℝ0
+, that reflects 

the observed variations of the realizations 𝑓𝑘 is given by  

 𝑓HB(𝐲, 𝑠): = 𝑓HB(𝑠) + ∑ √𝜆𝑚𝐲𝑚𝑏𝑚(𝑠)𝑀
𝑚=1 .   (12) 

Feasible upper and lower bounds 𝐲min and 𝐲max are 
estimated by inserting the realizations 𝑓𝑘 in Eq. (11). In 
order to ensure the required monotonicity of the resulting 
H(B) curve with the intermediate value theorem the 
monotonicity is checked for each combination of upper 
and lower bounds, and they are adjusted accordingly if 
the monotonicity fails.  

4 Determination of model parameters 

The parameters of the parametrized H(B) curve 
𝑓HB(𝐲,∙) are determined by solving the following 
optimization problem (minimizing the deviation of the 
measured to the simulated vertical field component in the 
magnet at different positions 𝑝 and current levels 𝑗): 

 

 

 

 min𝐲𝑚∈[𝐲𝑚
min,𝐲𝑚

max]
∑ ‖𝐁𝑦

meas(𝑝, 𝑗) − 𝐁𝑦
sim(𝑝, 𝑗)‖

2 
𝑝∈𝑃,𝑗∈𝐽   

s.t.     𝐁sim = curl 𝐀  

∫ curl 𝜈(‖curl 𝐀‖)curl 𝐀 ∙ curl 𝐯
 

𝐷

 d𝑉 = ∫ 𝐉 ∙ 𝐯 d𝑉
 

𝐷

 ∀𝐯 ∈ 𝒱 

𝜈(𝑠) = {
{

1

𝑠
(𝑓HB(𝑠) + ∑ √𝜆𝑚𝐲𝑚𝑏𝑚(𝑠)

𝑀

𝑚=1
) 𝑠 > 0

𝛼                                                               𝑠 = 0

 in 𝐷iron 

1/𝜇0                                                                        in 𝐷air.

 

5 Results  

Starting with a set of B(H)-data measurements of 𝐾 = 26 

specimen in 𝐿 = 28 points, the parametrized H(B) curve 
is derived. To validate the parameter determination, a 

ground truth parameter 𝐲0 ∈ [𝐲min, 𝐲max] is selected and 

an artificial dataset �̂�𝑦
meas(𝑝, 𝑗) of an H-shaped accel-

erator magnet with 𝑗 ∈ [20,450] Amp. is generated by 
solving the magnetostatic problem. Subsequently, the 
parametrized H(B) curve 𝑓HB(argmin 𝐲, 𝑠) is computed. 

Its relative error compared to 𝑓HB(𝐲0, 𝑠) is shown in Figure 
1. The error in the reconstructed air gap field remains 
below 10−4 T for 𝑗 ∈ [20,600]  Amp. The parametrized 
H(B) curve and the parameter determination by 
optimization are suitable to retrieve the H(B) dependence 
in a built magnet and to adjust the field simulation. 

 

Fig. 1: Relative error between  𝑓HB(argmin 𝐲, 𝑠) and 

 𝑓HB(𝐲0, 𝑠) in Ampere. 
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